

Does quality of life predict morbidity or mortality in patients with atrial fibrillation (AF)?

Erika Friedmann^a, Eleanor Schron,^b Sue A. Thomas^a

^a University of Maryland School of Nursing;
 ^b NEI, National Institutes of Health

BackgroundAtrial Fibrillation (AF)

- AF is the most common chronic arrhythmia
- Incidence of AF increases with advancing age affecting almost 1 in 20 people > the age of 60
- Prevalence is expected to increase 2.5 fold by the year 2050 as the general population ages
- Hospital discharges exceed 465,000 annually in the U.S.

Rosamond W et al. (2007) *Circulation;* Fuster V et al. (2006) *J Am Coll Cardiol;* Go AS et al. (2001) *JAMA*

Background Atrial Fibrillation (AF)

 AF is an independent risk factor for death, stroke and decreased quality of life

Wolfe PA (1991) Stroke; Ezekowitz MD (2007) N Engl J Med

 Symptoms include shortness of breath, palpitations, dizziness, chest pain, fatigue

Levy D et al. (1999) Circulation; Moser & Riegel (2008) Cardiac Nursing

 Patients with AF frequently have associated cardiovascular conditions, including heart failure, MI, and other cardiac arrhythmias

BenjaminEJ et al. (1998) Circulation; Fuster V et al. (2006) J Am Coll Cardiol

Background Atrial Fibrillation (AF)

- AF management
 - Rate-control with anticoagulation
 - Rhythm-control with anticoagulation
 - Innovative treatments (e.g. ablation)
- No differences in mortality or QOL between treatments reported in large, multi-center clinical trials.
- Symptoms improve with treatment however patients have poorer health related quality of life (QOL) than healthy controls.
- Psychosocial impairments and poor QOL worse in AF than post angioplasty, post-myocardial infarction, or with heart failure.

Poor QOL Predicts Morbidity or Mortality

Post Myocardial Infarction

Gorkin L et al. (1993) Am J Cardiol; Thomas et al. (1997) Am j Crit Care

Heart Failure

Thomas et al. (2003) AACN; Friedmann E et al (2006) Am Heart J

Ventricular Arrhythmia

Steinberg et al. (2008) Heart Rhythm; Piotrowicz et al. (2007) Eur Heart J

Atrial Fibrillation

None known

Purpose

- To examine the contribution of health related quality of life (QOL) to mortality, defined as time to death, beyond those of clinical/demographic variables in patients with AF.
- To examine the contribution of QOL to mortality, defined as hospitalization or death within one year beyond those of clinical/demographic variables in patients with AF.

Methodology

- Limited Access Data base
 - IRB approved by UMB and NHLBI/NIH
- Database
 - Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM)
 - Secondary data analysis
 - Prospective, longitudinal study
 - Baseline
 - Patients with AF (N=693)

Description of AFFIRM

Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM)

- Randomized clinical trial comparing rate versus rhythm control in patient with AF and at least 1 other risk factor for stroke or death:
 - age 65 years or older
 - systemic hypertension
 - diabetes mellitus
 - congestive heart failure
 - transient ischemic attack, or prior stroke.
- 213 clinical sites randomized 4,060 pts over 3 years (NOV 1995 - OCT 1999).
- Average follow-up 3.5 years (OCT 2001)
- No statistically significant differences according to treatment in primary end point – survival.

Description of AFFIRM QOL Sub Study

- Fifty-six (25%) of AFFIRM sites were randomly selected to recruit AFFIRM patients to participate in the QOL substudy.
- Patients in both treatment groups completed questionnaires at baseline and follow-up.
 - Short Form-36 (SF-36) Ware, et al. (1992) Medical Care
 - Quality of Life Index-cardiac version (QLI-CV)

Ferrans & Powers (1985) Advances in Nursing Science AFFIRM Investigators (2005) AHJ

Description of AFFIRM QOL Instruments: Short Form 36 (SF-36)

- Brief, self-administered, widely used generic measure of health status
- Covers physical and mental health concepts
- Designed to be applicable to a wide range of types and severities of health conditions
- Well-documented reliability and validity

Ware JE Jr, Kosinski M, & Gandek B (2002) SF-36 Health Survey Manual & Interpretation Guide.

Description of AFFIRM QOL Instruments: Quality of Life Index- Cardiac Version (QLI-CV)

- Brief, self-administered, generic instrument with an added disease component
- Well-documented reliability and validity
- Respondents rate satisfaction with 36 aspects of QOL then rate importance of each on a 6-point Likert-type scale

Ferrans and Powers (1985) Advances in Nursing Science

Ferrans and Powers (1992) Res Nurs Health

Methods: Independent Variables

- Clinical/Demographic
 - History of CAD,Hypertension, Diabetes,Stroke/TIA
 - Heart Failure
 - LVEF
 - Treatment Arm
 - Smoker
 - Age
 - Gender
 - Socioeconomic status

- QOL
 - SF36 Physical component score (PCS)
 - SF 36 Mental component score (MCS)
 - Quality of life Index-CV scores

Baseline Characteristics N=693

1	
Mean (SD)	N (%)
69.8 (8.2)	
	431 (62.2)
	649 (93)
	257 (37)
	116 (17)
	489 (71)
	129 (19)
	94 (13.5)
	128 (24.8)
	141 (20.3)
	79 (11.4)
	, ,

Outcomes

- -Mortality (n = 93; 13.4%)
 - Time to death (survival days)
 - Average follow up 3.5 years

- -Morbidity (n = 259; 37.8%)
 - Hospitalized or died within one year

Research Questions

- 1. Do clinical/demographic variables, predict mortality (time to death)) in patients with AF beyond the contributions of the clinical/demographic variables?
- 2. Does QOL independently predict mortality (time to death) in patients with AF beyond the contributions of the clinical/demographic variables?

Predicting Mortality

Cox regression used to examine predictors of mortality (time to death)

- Step 1: Clinical/demographic variables (clinical history CAD, hypertension, HF, diabetes, stroke/TIA, LVEF, age, gender, socioeconomic status, treatment arm) are individual predictors of mortality (time to death)
 - Any variable that predicted mortality with p < .2 was included in a combined analysis of clinical/demographic predictors

Cox Regression Mortality: Combined Clinical/ Demographic Predictors

	Sig.	HR	95%	6 CI
Hypertension	.011	1.937	1.162	3.226
Age	<.001	1.109	1.070	1.150
Female	.039	.619	.393	.975

Predicting Mortality

- Step 2: QOL variables (PCS, MCS, QLI-CV) are independent predictors of mortality.
 - QOL variables were included in a combined analysis with clinical/demographic variables that predicted mortality with p < .20 in step 1
- Step 3: A parsimonious model was created by removing non- significant and noninfluential (p > .20) variables and re-running the regression iteratively.

Cox Regression Mortality: Clinical/Demographic & QOL Predictors

	Sig.	HR	95%	% CI
Hypertension	.015	1.885	1.131	3.143
Age	<.001	1.099	1.060	1.139
Female	.005	.510	.318	.818
MCS Score	.846	.995	.948	1.044
PCS Score	.005	.935	.892	.980
QLI -CV Score	.625	1.014	.959	1.071

Cox Regression Mortality: Final Model Clinical/ Demographic & QOL Predictors

	Sig.	HR	95%	6 CI
Hypertension	.013	1.913	1.149	3.186
Age	<.001	1.102	1.063	1.142
Female	.004	.504	.315	.807
PCS Score	.002	.940	.905	.977

Predicting Morbidity

- Logistic regression same steps as in analysis of mortality
- Outcome is presence or absence of morbidity (hospitalization or death) in the first year of the study.

Logistic Regression Morbidity: Clinical/Demographic Predictors

	Sig.	OR	95%	ό CI
CAD	.160	1.274	.909	1.785
Diabetes	.060	1.481	.984	2.230
Stroke	.013	1.793	1.132	2.840
Heart Failure	.007	1.801	1.171	2.772
Rhythm Control	<.001	2.090	1.508	2.897

Morbidity: Clinical/Demographic & QOL Predictors

	Sig.	OR	95%	% CI
CAD	.207	1.247	.885	1.759
Diabetes	.224	1.301	.852	1.988
Stroke	.013	1.815	1.134	2.905
Heart Failure	.020	1.681	1.083	2.608
Rhythm Control	<.001	2.239	1.604	3.126
MCS Score	.036	.960	.924	.997
PCS Score	<.001	.932	.899	.967
QLI Score	.489	.986	.947	1.026

Logistic Regression Morbidity: Clinical/Demographic & QOL Predictors Parsimonious Model

	Sig.	OR	95%	6 CI
Stroke	.014	1.796	1.127	2.863
Heart Failure	.007	1.807	1.175	2.778
Rhythm Control	.000	2.206	1.584	3.073
MCS Score	.021	.957	.922	.993
PCS Score	.000	.927	.896	.958

Limitations

- Related to secondary data analysis
 - Variables set
 - Data categories defined
- Cannot generalize results to younger patients with AF or those excluded from AFFIRM
- Small number of minorities

Strengths

- Large, well-characterized sample
- No cost
- Network of investigators available
- Complete baseline SF-36 and QLI-CV data in AFFIRM

Conclusion

- QOL contributes to morbidity and mortality in patients with AF.
- Interventions for improving QOL and helping patients adapt to treatments for AF may decrease morbidity and improve survival.
- QOL adds meaningful information beyond traditional biomedical factors to the prediction of mortality and/or morbidity of patients with AF.