

Epigenetics for Breast Cancer Prevention: A Family Case-Control Study

Mildred Gonzales, MSN, RN, OCN, PhD(c)

BACKGROUND

- Breast cancer most common malignancy and second leading cause of cancer death among women.
- Methylenetetrahydrofolate reductase (MTHFR) one of the most studied gene variations associated with breast cancer affecting epigenetic pathways.
- Epigenetic (gene-environment interaction) modifications from unhealthy environment and behaviors can lead to cancer.

PROBLEM STATEMENT

- Study results are inconsistent on breast cancer gene variations as risk factors for breast cancer.
- Inconsistencies are due to environmental and behavioral factors, i. e. folate, alcohol intake, & smoking, that warrant further investigations.

PURPOSE

• Investigate the associations of epigenetic risks for breast cancer.

SIGNIFICANCE

 Identifying health behaviors offers opportunity for future interventions that target epigenetic pathways for breast cancer prevention.

CONCEPTUAL THEORETICAL FRAMEWORK:

Nursing Metaparadigm and Epigenetic Theory of Complex Diseases

Cancer is a complex disease linked to epigenetic misregulation affected by endogenous and exogenous factors.

MTHFR Cytogenetic
Location: 1p36.3
Chromosome 1

METHODS

SETTING

• Southern California counties – Los Angeles, San Bernardino, Riverside, and Orange

SAMPLE

 Total of 60 female participants - 30 breast cancer cases and one of their family members as controls will be recruited from California Cancer Registry.

INSTRUMENTS

 Food Frequency Questionnaire (FFQ), 2000 Cancer Module National Health Interview Survey, and Demographic Questionnaire

ANALYSIS

LABORATORY ANALYSIS

 Salivary and/or blood samples for MTHFR gene variations (SNPs 677 1298) using PCR DNA test, serum folate, and metabolites' analyses

STATISTICAL ANALYSIS

- Pooled analysis of relative risks to determine rate differences between cases and control groups
- Correlation tests, t-test, and chi-square to determine associations among variables

DATA COLLECTION - in progress

CONCLUSION

 Associations of epigenetic risks with breast cancer will serve as foundation for future development of innovative behavioral interventions; personalized healthcare for breast cancer prevention and control based on genome health.

THEORETICAL IMPLICATIONS

 Foundation for new hypotheses and possible generation of middle range theory for epigenetics of cancer.

CLINICAL IMPLICATIONS

- Significant collaborative role of Nursing in translating knowledge of epigenetics into health promotion and disease prevention.
- Evolution of new targeted approach in diagnostics and treatment management for breast cancer.

HEALTH POLICY IMPLICATIONS

• Impact for high quality healthcare with enhanced genome health awareness and competencies among healthcare professionals.

FUTURE RESEARCH

- Future studies to establish epigenetic risks that can be reversed to prevent cancer.
- Prospective development of personalized behavioral intervention for cancer prevention and control.

ACKNOWLEDGEMENT

Strength and perseverance are nurtured within. It is an honor & privilege to be supported & guided by inspiring members of my Dissertation Committee.

en Dee, PhD, FAAN Pamela Shiao, PhD, FAAN

AAN Felicitas dela Cruz, DNSc, FAAN