Early Life Physiological and Psychosocial Stress Imprints Gut Microbiome in Preterm Infants

To investigate the regulation of early life stress by the brain-gut-microbiota signaling mechanism and explore non-invasive microbial and immune-inflammatory predictors of neurodevelopment.

Background and Significance

- The U.S. ranks one of the highest in the world for the number of preterm births.
 - < 37 weeks of gestation; 10% in 2014
- In NICU, infants are exposed to numerous early life stressors/pain during critical periods of neurodevelopment.
- 40% NICU survivors have at least 1 neurodevelopmental deficit.
- Yet, mechanisms of early life experiences that alter infants' health outcomes remain largely unknown.

The Brain-Gut-Microbiota Axis

- Components: Central nervous system (CNS),
 Hypothalamus-pituitary-adrenal (HPA) axis,
 Sympathetic-parasympathetic autonomic nervous
 system, Enteric nervous system, and Intestinal
 microbiota.
- Bidirectional communication network:

Top-down: brain to influence the motor, sensory and secretory modalities of the GI tract

Bottom-up: gut to affect brain function (hypothalamus and amygdala).

Video: https://www.youtube.com/watch?v=5DTrENdWvvM

Brain-Gut-Microbiota Signaling System

Gut Microbiome Patterns in Infants

• Colonization begins with facultative anaerobic organisms, followed by the development of obligate anaerobes, including *Bifidobacterium*, *Bacteroides*, and *Clostridium*.

• Full-term, breast-fed infant serves as the health standard or the "norm" for newborns.

 Factors: delivery mode, feeding, medication use, hospital environment, other early life experiences, and host genetics.

Gut Microbiome Patterns in Infants

- Dysbiosis of gut microbiota persists during infancy, especially in preterm infants, and then may reach a stable configuration at age 2 - 3 yrs.
- Preterm infants: demonstrate reduced levels of obligate anaerobes.
- Preterm infants: increased levels of facultative anaerobes, i.e., Enterobacteriaceae and Enterococcaceae
- https://www.youtube.com/watch?v=Pb272zsixSQ

Study Aims

Aim 1: Determine preterm infants' gut microbiome patterns over first 3-4 weeks

Aim 2: The linkage of gut microbiome patterns with early life stress/pain

Aim 3: The linkage of gut microbiome with neurodevelopmental outcomes.

Methods

• Design: Prospective longitudinal study.

• Setting: Level IV CCMC NICU at two sites, Hartford and Farmington, CT.

• Subjects: Stable preterm infants (26 – 32 weeks gestation), follow-up for 3-4 weeks.

Methods

- IRB approval and obtain consent from parents.
- Early life stress are measured daily.

NISS: Neonatal Infant Stressor Scale (Newnham, et. al, 2009)

- Feeding types (Mother's, Donor's, Formula)
- Neurodevelopmental outcomes, at 36-38 weeks CA.

NNNS: NICU Neurobehavioral Scale (Lester, et. al, 2004)

Methods

 Stool samples are collected daily starting 0 – 5 postnatal days for 3-4 weeks.

Culture-independent DNA-based Genomic Technologies:

Gut microbiota community profiles are determined by 16S rRNA sequencing and analysis

Investigating the Infant Microbiome

PCR Amplification of the V4 Hypervariable Region of the 16S rRNA Gene

Results from First Cohort

Clinical characteristics of the initial 29 subjects:

		N (%)	
Gender	Male	14 (48 %)	Gestational Age (wks)
	Female	15 (52%)	Birth weight (g)
Ethnicity	Hispanic	9 (31%)	SNAPEII
	Non-Hispanic	20 (69%)	
Delivery	Vaginal	12 (45%)	
	C-section	16 (55%)	
Race	White	22 (75 %)	
	African American	5 (17%)	
	Asian	1 (3%)	

Mean

31.3

1460

8.6

SD

1.7

445.3

10.5

Workflow and Quality Control of Stool Samples

Result 1: Microbiome community composition in preterm infants

- The most abundant phyla:
 - Proteobacteria (54.3%)
 - Firmicutes (39.2%)
 - Bacteroidetes (3.9%)
 - Actinobacteria (2.4%).

- What contributes to changes in the diversity of the microbiome (Linear mixed-effects models):
 - Time (postnatal days)
 - Gender
 - Feeding type (using mother's breastmilk or not)

Infant A

Infant P

Posnatal Days

3 Microbial Patterns by Individual Infants cong, Xu,

Janton, Henderson, Matson, McGrath, Maas, Graf, (2016), PloS One

Result 2: Microbiome Patterns and Gender

Cong, Xu, Janton, Henderson, Matson, McGrath, Maas, Graf, (2016), PloS One

α-diversity Index:

Left: males

 (0.48 ± 0.26)

Right: females

 (0.58 ± 0.22)

P < 0.05

Microbiome Communities and Gender (abundance) Cong, Xu, Janton, Henderson, Matson, McGrath, Maas, Graf (2016)

Result 3: Gut Microbiome and Feeding Types

Results 4: Cumulative Pain/Stressors in the NICU

- Data from initial 50 subjects:
- Acute pain/Stressor daily: 23.4 \pm 7.2 diaper change, heel sticks, arterial blood draw
- Chronic procedures daily 5.1 ± 3.2 hours

DICC in citu NIC tube in citu CDAD cyctemic infection
Average Daily NISS Scores
(first 28 days of life)

Developing a new scale measuring cumulative pain/stressors in the NICU

Accumulated Pain/Stressor Scale (APSS) in NICUs — based on Neonatal Infant Stressor Scale (NISS, Newnham, et al. (2009) in Australia)

- Focus group study
- National survey
- •68 procedures
- •9 categories: daily care, feeding, imaging, blood draw, peripheral venous access, central venous access, respiratory care, surgeries and major procedures, and infection

[•]Xu, Cong, Walsh, S. (in press). Development of Accumulated Pain/ Stressor Scale (APSS) in NICUs: A National Survey. Pain Management Nursing.

Results 5: Pain/Stressors, Gut Microbiome, and Neurobehavioral Outcomes

Cumulative Pain/Stress and Neurobehavioral Outcome GLM Regression Analysis: NNNS scale

	NNNS- Stress/ Abstinence (p – value)	NNNS- Habituation (p-value)
Daily acute pain/stressors	0.028	0.016
Daily chronic pain/stressors	0.051	0.005
Gender	>0.05	0.022
Birth GA	>0.05	>0.05
Weight	>0.05	0.004
SNAPPE-II	>0.05	0.041
Direct BF	>0.05	0.002
Skin-to-Skin (KC)	>0.05	0.001

Generalized linear mixed models:

- NISS Acute and chronic pain/stressors: significantly associated with infant neurobehavioral outcomes (NNNS- Stress/Abstinence subscale scores), when controlling for birth GA, birth weight, delivery mode, severity of illness, and direct breastfeeding and kangaroo care contacts, p<0.05.
- NISS scores were negatively correlated to NNNS Habituation subscale scores, p<0.05-0.01.
- Indicating that infants who experienced more accumulative pain/stressor had worse stress responses at 36-38 weeks CA.
- Indicating infants who experienced less painful/stressful procedures had better habituation and regulation responses.

Linkages of Pain/Stressors, Gut Microbiome, and Neurobehavioral Outcomes –

Indicator species of microbiota in different levels of pain/stressors experienced in the NICU

Phylum	Order / Genus	Indicator Value	Phylum	Order / Genus	Indicator Value
Infants Experienced Low level of Acute Pain/Stressors			Infants Experienced Low level of Chronic Pain/Stressors		
Actinobacteria	Bifidobacteriales/Bifidobacterium	0.65**	Bacteroidetes	Bacteroidales/Bacteroides	0.50*
Infants Experienced High levels of Acute Pain/Stressors		Infants Experienced High level of Chronic Pain/Stressors			
Firmicutes	Lactobacillales/Enterococcus	0.78**	Firmicutes	Lactobacillales/Enterococcus	0.85**
Firmicutes	Lactobacillales/other	0.72**	Firmicutes	Lactobacillales/other	0.80**
Firmicutes	Lactobacillales/Granulicatella	0.69**	Firmicutes	Other/other	0.77**
Proteobacteria	Enterobacteriales/Pantoea	0.52**	Firmicutes	Lactobacillales/Granulicatella	0.68**

Note: ** p < 0.01; * p < 0.05

Indicator species of gut microbiota with NNNS

Phylum	Order / Genus	Indicator Value		
Infants with Less (better) NNNS-stress response				
Bacteroidetes	Bacteroidales/Bacteroides	0.55**		
Infants with high (worse) NNNS-stress response				
Firmicutes	Lactobacillales/other	0.72**		
Proteobacteria	Enterobacteriales/Pantoea	0.68**		
Firmicutes	Clostridiales/other	0.56**		
Proteobacteria	Aeromonadales/other	0.52**		

Note: ** p < 0.01

Conclusions

- Over the first 30 days of early life, gut microbiome diversity begins low and increases daily after birth.
- Preterm infants' gut microbiome community is often dominated by Enterics.
- Preterm infants experience numeric acute and prolonged chronic painful/stressful procedures.
- Time (postnatal days of life), feeding, gender, and pain/stress experience affect the composition of the gut microbiome.
- Gut microbiome indicator species may be omic markers of pain/stressors for infant neurodevelopment.

Multidisciplinary Collaborations

Research Team:

- Xiaomei Cong, PhD, RN
- Joerg Graf, PhD
- Wendy A. Henderson, PhD, RN
- Jacqueline McGrath, PhD, RN
- Adam Matson, MD
- Naveed Hussain, MD
- Stephen Walsh, PhD
- Kendra Maas, PhD
- · Wanli Xu, MS, RN, PhD student
- Dorothy Vittner, MS, RN, PhD student
- Ana Diallo, RN, PhD student
- Shari Galvin, BS, RN
- Megan Fitzsimons, BS, RN
- Laura Keating, BS, RN
- Angela Deiong, BS, RN

Research Support:

- NIH NINR K23NR014674
- UConn Institute of Systems Genomics (ISG)
- UConn School of Nursing
- UConn Dept. of Molecular & Cell Biology
- Connecticut Children's
 Medical Center
- Stevenson Fund Support
 CT Children's Medical
 Center NICU Staff
 Members and Families

innovation **UNLEASHED**

